
CALCULUS – II



Definition 
If a = <a1,a2,a3> and b = <b1,b2,b3> , then the dot product 
of a and b is a scalar c given by

DOT PRODUCT

c = a.b = a1b1 + a2b2 + a3b3

Another name for dot product is scalar product. 

Example
If a = (1, -3, 2) and b = (4, 5, -8), find the dot product of a and b.

Solution

c = a.b = a1b1 + a2b2 + a3b3

= (1)x(1) + (-3)x(5) + (2)x(-8) 

= - 27



If a, b, and c are 3-D vectors, then

PROPERTIES OF THE DOT PRODUCT

1. a.a = |a|2

2. a.b = b.a

3. a.(b + c) = a.b + a.c

4. (c.a).b = c.(a.b) = a.(c.b)

5. 0.a = 0



If θ is the angle between the nonzero vectors a and b, then

a.b = |a||b|cosθ

or

θ
a

b

cos θ = a.b / |a||b|

Note
Two non-zero vectors a and b are orthogonal if and only if 

a‧b = 0

Geometric Interpretation of Dot Product



If a = a1i + a2j + a3k and b = b1i+ b2j + b3k, then the cross 
product of a and b is written as a x b.

The cross product a x b is a vector c such that

CROSS PRODUCT OF TWO VECTORS
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Note
The vector c is orthogonal to 
both a and b.



Let A = (1, -3, 2) and B = (4, 5, -8), then

Example:
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GEOMETRIC INTEPRETATION

If θ is the angle between the nonzero vectors a and b, then 
the cross product of a and b is a vector c whose magnitude is 
given by the expression 

and whose direction is given by the right hand rule.

c = a x b = |a||b|sinθ

c

b

a

Note
Two nonzero vectors a and b are parallel if and only if a x b = 0



CROSS PRODUCT OF BASIS VECTORS

i x j = k    ; j x k = I

k x i = j    ; j x i = -k

k x j = -i   ; i x k = -j

i x j j x i



If a and b are vectors and c is a scalar, then

THEOREM

a x b = -b x a

(ca) x b = c(a x b) = a x (cb)







The basics
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A vector valued function A(t) is a rule that associates with each real 

number t a vector A(t). 

A(t) = A1(t)i + A2(t)j + A3(t)k

For example, f(t) = t3 – 2t + 4 is a scalar function of a single variable t, 

while A(t) = cos ti + sin tj + tk is a vector function of t.

VECTOR AND SCALAR FUNCTIONS



A vector function A(t) is differentiable at a point t if
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exists, and A′(t) is called the derivative of A(t), written as

A′(t) = A1′(t)i + A2′(t)j + A3′(t)k

Calculate the derivative of each component!

VECTOR DIFFERENTIATION



Example:

Let A(t) = cos ti + sin tj + tk. Find the derivative of A(t).

Solution:

A′(t) = -sin ti + cos tj + k
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RULES OF VECTOR DIFFERENTIATION



Let A(t) = A1(t)i + A2(t)j + A3(t)k and suppose that the component 

functions A1(t), A2(t) and A3(t) are integrable. Then the indefinite 

integral of A(t) is defined by

1 2 3( ) ( ) ( ) ( )t dt A t dt A t dt A t dt= + +   A i j k

If A1(t), A2(t) and A3(t) are integrable over the interval [t1, t2], then the 

definite integral of A(t) is defined by
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Calculate the integral of each component!

VECTOR INTEGRATION



Let A(t) = cos ti + sin tj + tk. Find
2
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Example



If every point in a region of space is assigned a scalar value obtained 

from a scalar function f(x, y, z), then a scalar field f(x, y, z) is defined in 

the region, such as the pressure in atmosphere and mass density

within the earth, etc.

SCALAR FIELD



Partial Derivatives
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Let f = x2 + 2y2. Calculate         and 
f
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Del operator

x y z
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Gradient characterizes maximum increase. If at a point P the gradient 

of f is not the zero vector, it represents the direction of maximum space 

rate of increase in f at P.

GRADIENT



Given potential function V = x2y + xy2 + xz2, (a) find the gradient of V, 

and (b) evaluate it at (1, -1, 3).

Solution:
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Electric field: E = E(x, y, z),

Magnetic field : H = H(x, y, z)

If every point in a region of space is assigned a vector value obtained 

from a vector function A(x, y, z), then a vector field A(x, y, z) is defined 

in the region.
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VECTOR FIELD



The divergence of a vector field A at a point is defined as the net 

outward flux of A per unit volume as the volume about the point tends 

to zero:

It indicates the presence of a source (or sink)! ⎯ term the source as 

flow source. And div A is a measure of the strength of the flow source.

DIVERGENCE OF A VECTOR FIELD
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In rectangular coordinate, the divergence of A can be calculated as

For instance, if A = 3xzi + 2xyj – yz2k, then

div A = 3z + 2x – 2yz

At (1, 2, 2), div A = 0; at (1, 1, 2), div A = 4, there is a source; at (1, 3, 1), 

div A = -1, there is a sink.

DIVERGENCE OF A VECTOR FIELD
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The curl of a vector field A is a vector whose magnitude is the 

maximum net circulation of A per unit area as the area tends to zero 

and whose direction is the normal direction of the area.

It is an indication of a vortex source, which causes a circulation of a 

vector field around it.

Water whirling down a sink drain is an example of a vortex sink

causing a circulation of fluid velocity.

If A is electric field intensity, then the circulation will be an 

electromotive force around the closed path. 

CURL OF A VECTOR FIELD
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In rectangular coordinate, curl A can be calculated as
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CURL OF A VECTOR FIELD



Example:

If A = yzi + 3zxj + zk, then

curl 
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;    dl = dxi +dyj +dzk

For a closed loop, i.e. ABCA, 

LINE INTEGRAL OF VECTOR FUNCTIONS
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ĵ
î
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For F = yi – xj, calculate the circulation of F along the two paths as 

shown below. 
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dl = dxi +dyj +dzk
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Smooth

Surface S

dS

n̂

P



Surface integral or the flux of E 

across the surface S is

n̂ is the outward unit vector normal to 

the surface.

For closed surface,

SURFACE INTEGRAL
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If F = xi + yj + (z2 – 1)k, calculate the flux of F across the surface shown 

in the figure. 
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Let F = 2xzi – xj + y2k. Evaluate
V

dV F

where V is the region bounded by the surface x = 0, x = 2, y = 0, y = 6, z

= 0, z = 4.

Example:
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