More C++ Concepts

» Operator overloading
* Friend Function

* This Operator

* Inline Function

Operator overloading

* Programmer can use some operator
symbols to define special member
functions of a class

* Provides convenient notations for
object behaviors

Why Operator Overloading

Inti, j, k; I integers |
float m, n, p: // floats The compiler overlo_aqls
the + operator for built-in
o integer and float types by
K=1+]; default, producing integer
/[integer addition and assignment addition with i+, and
p=m+n; floating addition with m+n.

// floating addition and assignment
We can make object operation look like individual
Int variable operation, using operator functions

Complex a,b,c,
c=a+b;

Operator Overloading Syntax

e Syntax Is: Examles
operator+
operator(@(argument-list) operator-
I operator*
operator/

--- operator 1s a function

--- (@ 1s one of C++ operator symbols (+, -, =, etc..)

Example of Operator Overloading

class CStr

{
char *pData;
Int nLength;

public:

/...
void cat(char *s);
/...
CStr operator+(CStr strl, CStr str2);
CStr operator+(CStr str, char *s);
CStr operator+(char *s, CStr str);

/laccessors
char* get_Data();
Int get_Len();

void CStr::cat(char *s)
{ 5
Int n;
char *pTemp;
n=strlen(s);
If (n==0) return;

pTemp=new char[n+nLength+1];
If (pData)
strcpy(pTemp,pData);

strcat(pTemp,s);
pData=pTemp;
nLength+=n;

}

The Addition (+) Operator

CStr CStr::operator+(CStr strl, CStr str2)

{
CStr new_string(strl);

//call the copy constructor to initialize an
/lentirely new CStr object with the first
/loperand

new_string.cat(str2.get _Data());

/[concatenate the second operand onto the
/lend of new_string

return new_string;

//call copy constructor to create a copy of
/lthe return value new_string

new_string

strcat(str1,str2)
strlen(str1) +strlen(str2)

How does it work?

CStr first(“John”) ;
CStr last (“Johnson”) ;
CStr name (first+last);

CStr CStr::operator+ (CStr strl,CStr str2)

{
CStr new string(strl);

new string.cat(strZ2.get()):;
return new string;

} I

1

“John Johnson”

name —ii

Copy constructor

Temporary CStr object

Implementing Operator Overloading

* Two ways:
— Implemented as member functions
— Implemented as non-member or Friend functions

 the operator function may need to be declared as a
friend if it requires access to protected or private data

« EXxpression objl@obj2 translates into a function call

— objl.operator@(obj2), if this function is defined within
class objl

— operator@(objl,0bj2), if this function is defined outside
the class objl

Implementing Operator Overloading

1. Defined as a member function

class Complex {

public:

c = a+b;
Complex operator +(const Complex &op) \
{
double real = _real + op._real, ¢ = a.operator+
imag = _imag + op._imag; (b);
return(Complex(real, imag));
¥

¥

Implementing Operator Overloading

2. Defined as a non-member function

class Complex {

C = a+b;
oublic: \
double real() { return real; } c = operator+ (a, b);

/Ineed access functions
double imag() { return _imag; }

Complex operator +(Complex &opl, Complex &op?2)
{
double real =opl.real() + op2.real(),
Imag = opl.imag() + op2.imag();
return(Complex(real, imag));

}

};

Implementing Operator Overloading

3. Defined as a friend function

class Complex {

C = a+b;
oublic: \
friend Complex operator +(c = operator+ (a, b);

const Complex &,
const Complex &

); Complex operator +(Complex &opl, Complex &op?2)

{
double real =opl. real + op2. real,
Imag = opl. imag + op2._imag;
return(Complex(real, imag));

}

};

W N

Ordinary Member Functions, Static Functions
and Friend Functions

. The function can access the private part of

the class definition

. The function is in the scope of the class
. The function must be invoked on an object

Which of these are true about the different functions?

12

What is 'Friend?

* Friend declarations introduce extra coupling

between classes
— Once an object is declared as a friend, it has
access to all non-public members as if they

were public

* Access Is unidirectional
— If B Is designated as friend of A, B can access
A’s non-public members; A cannot access B's

* A friend function of a class is defined
outside of that class's scope

13

More about 'Friend’

« The major use of friends is
— to provide more efficient access to data members

than the function call
— to accommodate operator functions with easy
access to private data members

* Friends can have access to everything, which
defeats data hiding, so use them carefully

* Friends have permission to change the
Internal state from outside the class. Always
recommend use member functions instead of

friends to change state

14

Assignment Operator

« Assignment between objects of the same type Is always

supported

— the compiler supplies a hidden assignment function if you don't
write your own one

— same problem as with the copy constructor - the member by
member copying

— Syntax:

class& class::operator=(const class &arg)

1
/...

¥

15

Example: Assignment for CStr class

Assignment operator for CStr:

CStr& CStr::operator=(const CStr & source)

A 4

A

Return type - a reference to
(address of) a CStr object

Argument type - a reference to a CStr object
(since it is const, the function cannot modify it)

CStr& CStr::operator=(const CStr &source) {
//... Do the copying
return *this;

}

v

Assignment function is called as a
member function of the left operand

=>Return the object itself
stri=str2;

Copy Assignment is different from
Copy Constructor
strl.operator=(str2)

16

The "this" pointer

Within a member function, the this keyword is a pointer to the current
object, i.e. the object through which the function was called

C++ passes a hidden this pointer whenever a member function is

called

Within a member function definition, there is an implicit use of this
pointer for references to data members

A 4

this

pData

Data member reference Equivalent to

nLength

pData this->pData
nLength this->nLength

CStr object

(*this)

17

Overloading stream-insertion and
stream-extraction operators

In fact, cout<< or cin>> are operator overloading built in C++
standard lib of iostream.h, using operator "<<" and ">>"

cout and cin are the objects of ostream and istream classes,

respectively
We can add a friend function which overloads the operator <<

friend ostream& operator<< (ostream &os, const Date &d);

ostream& operator<<(ostream &os, const Date &d)

{

0s<<d.month<<*/ ”<<d.day<<“/’>§‘§1.year;

return os; N .
cout ---- object of ostream

¥

cout<< d1; //overloaded operator 18

Overloading stream-insertion and
stream-extraction operators

« We can also add a friend function which overloads the
operator >>

friend istream®& operator>> (istream &in, Date &d);

Istream& operator>> (istream &in, Date &d)

{
char mmddyy|[9];

in >> mmddyy; cin ---- object of Istream

[/l check if valid data entered
If (d.set(mmddyy)) return in;

cout<< "Invalid date format: "<<d<<endl;
exit(-1);
cin >> d1;

19

Inline functions

e An inline function is one in which the
function code replaces the function call
directly.

e Inline class member functions
- if they are defined as part of the class definition,
implicit
- if they are defined outside of the class definition,
explicit, I.e.using the keyword, inline.
e Inline functions should be short (preferable
one-liners).

- Why? Because the use of inline function results in
duplication of the code of the function for each
invocation of the inline function 20

Example of Inline functions

class CStr
{

char *pData;
int nLength;

public: Inline functions within class declarations

char *get Data(void) {return pData; }//implicit inline function
int getlength (void) ;

b7

inline void CStr::getlength(void) //explicit inline function

{

return nLength;

} Inline functions outside of class declarations

int main (void)

{

char *s;

int n;] “yy -
CStr a(“Joe”); In both cases, the compiler will insert the code
s = a.get Data();

n = b.getlength(); |Of the functions get Data() and getlength()
/ Instead of generating calls to these functions

21

Inline functions (I1)

* An Inline function can never be located In
a run-time library since the actual code is
iInserted by the compiler and must
therefore be known at compile-time.

* Itis only useful to implement an inline
function when the time which is spent
during a function call is long compared to
the code In the function.

22

Take Home Message

« Operator overloading provides convenient
notations for object behaviors

* There are three ways to implement operator
overloading

— member functions
— normal non-member functions
— friend functions

23

