
1

More C++ Concepts

• Operator overloading

• Friend Function

• This Operator

• Inline Function

2

Operator overloading

• Programmer can use some operator
symbols to define special member
functions of a class

• Provides convenient notations for
object behaviors

3

int i, j, k; // integers

float m, n, p; // floats

k = i + j;

 // integer addition and assignment

p = m + n;

 // floating addition and assignment

Why Operator Overloading

 The compiler overloads

the + operator for built-in

integer and float types by

default, producing integer

addition with i+j, and

floating addition with m+n.

 We can make object operation look like individual
int variable operation, using operator functions

 Complex a,b,c;

 c = a + b;

4

Operator Overloading Syntax

• Syntax is:

operator@(argument-list)

--- operator is a function

--- @ is one of C++ operator symbols (+, -, =, etc..)

Examples:

operator+

operator-

operator*

operator/

5

class CStr

{

 char *pData;

 int nLength;

 public:

 // …

 void cat(char *s);

 // …

 CStr operator+(CStr str1, CStr str2);

 CStr operator+(CStr str, char *s);

 CStr operator+(char *s, CStr str);

 //accessors

 char* get_Data();

 int get_Len();

};

Example of Operator Overloading

void CStr::cat(char *s)

{

 int n;

 char *pTemp;

 n=strlen(s);

 if (n==0) return;

 pTemp=new char[n+nLength+1];

 if (pData)

 strcpy(pTemp,pData);

 strcat(pTemp,s);

 pData=pTemp;

 nLength+=n;

}

6

The Addition (+) Operator

CStr CStr::operator+(CStr str1, CStr str2)

{

 CStr new_string(str1);

 //call the copy constructor to initialize an
 //entirely new CStr object with the first
 //operand

 new_string.cat(str2.get_Data());
 //concatenate the second operand onto the

 //end of new_string

 return new_string;
 //call copy constructor to create a copy of

 //the return value new_string

}

new_string

str1
strlen(str1)
strcat(str1,str2)
strlen(str1)+strlen(str2)

7

How does it work?
CStr first(“John”);

CStr last(“Johnson”);

CStr name(first+last);

CStr CStr::operator+(CStr str1,CStr str2)

{

 CStr new_string(str1);

 new_string.cat(str2.get());

 return new_string;

}

“John Johnson”

Temporary CStr object
Copy constructor

name

8

Implementing Operator Overloading

• Two ways:

– Implemented as member functions

– Implemented as non-member or Friend functions

• the operator function may need to be declared as a

friend if it requires access to protected or private data

• Expression obj1@obj2 translates into a function call

– obj1.operator@(obj2), if this function is defined within

class obj1

– operator@(obj1,obj2), if this function is defined outside

the class obj1

9

1. Defined as a member function

Implementing Operator Overloading

class Complex {

 ...

 public:

 ...

 Complex operator +(const Complex &op)

 {

 double real = _real + op._real,

 imag = _imag + op._imag;

 return(Complex(real, imag));

 }

 ...

 };

c = a+b;

c = a.operator+
(b);

10

2. Defined as a non-member function

Implementing Operator Overloading

class Complex {

 ...

 public:

 ...

 double real() { return _real; }

 //need access functions

 double imag() { return _imag; }

 ...

 };
Complex operator +(Complex &op1, Complex &op2)

{

 double real = op1.real() + op2.real(),

 imag = op1.imag() + op2.imag();

 return(Complex(real, imag));

}

c = a+b;

c = operator+ (a, b);

11

3. Defined as a friend function

Implementing Operator Overloading

class Complex {

 ...

 public:

 ...

 friend Complex operator +(

 const Complex &,

 const Complex &

);

 ...

 };

Complex operator +(Complex &op1, Complex &op2)

{

 double real = op1._real + op2._real,

 imag = op1._imag + op2._imag;

 return(Complex(real, imag));

}

c = a+b;

c = operator+ (a, b);

12

Ordinary Member Functions, Static Functions
and Friend Functions

1. The function can access the private part of

the class definition

2. The function is in the scope of the class

3. The function must be invoked on an object

 Which of these are true about the different functions?

13

What is „Friend‟?

• Friend declarations introduce extra coupling
between classes
– Once an object is declared as a friend, it has

access to all non-public members as if they
were public

• Access is unidirectional
– If B is designated as friend of A, B can access

A’s non-public members; A cannot access B’s

• A friend function of a class is defined
outside of that class's scope

14

More about „Friend‟

• The major use of friends is
– to provide more efficient access to data members

than the function call

– to accommodate operator functions with easy

access to private data members

• Friends can have access to everything, which

defeats data hiding, so use them carefully

• Friends have permission to change the

internal state from outside the class. Always

recommend use member functions instead of

friends to change state

15

Assignment Operator

• Assignment between objects of the same type is always
supported

– the compiler supplies a hidden assignment function if you don’t
write your own one

– same problem as with the copy constructor - the member by
member copying

– Syntax:

 class& class::operator=(const class &arg)

 {

 //…

 }

16

Example: Assignment for CStr class

CStr& CStr::operator=(const CStr &source){

//... Do the copying

return *this;

}

Assignment operator for CStr:

CStr& CStr::operator=(const CStr & source)

Return type - a reference to

(address of) a CStr object

Argument type - a reference to a CStr object

(since it is const, the function cannot modify it)

Assignment function is called as a

member function of the left operand

=>Return the object itself
str1=str2;

str1.operator=(str2)

Copy Assignment is different from

Copy Constructor

17

The “this” pointer

• Within a member function, the this keyword is a pointer to the current

object, i.e. the object through which the function was called

• C++ passes a hidden this pointer whenever a member function is

called

• Within a member function definition, there is an implicit use of this

pointer for references to data members

pData

nLength

this Data member reference Equivalent to

pData this->pData

nLength this->nLength

CStr object

(*this)

18

Overloading stream-insertion and
stream-extraction operators

• In fact, cout<< or cin>> are operator overloading built in C++
standard lib of iostream.h, using operator "<<" and ">>"

• cout and cin are the objects of ostream and istream classes,
respectively

• We can add a friend function which overloads the operator <<

friend ostream& operator<< (ostream &os, const Date &d);

ostream& operator<<(ostream &os, const Date &d)

{

 os<<d.month<<“/”<<d.day<<“/”<<d.year;

 return os;

}

…
cout<< d1; //overloaded operator

ostream& operator<<(ostream &os, const Date &d)

{

 os<<d.month<<“/”<<d.day<<“/”<<d.year;

 return os;

}

…
cout<< d1; //overloaded operator

cout ---- object of ostream cout ---- object of ostream

19

Overloading stream-insertion and
stream-extraction operators

• We can also add a friend function which overloads the
operator >>

istream& operator>> (istream &in, Date &d)

{

 char mmddyy[9];

 in >> mmddyy;

 // check if valid data entered

 if (d.set(mmddyy)) return in;

 cout<< "Invalid date format: "<<d<<endl;

 exit(-1);

 }

friend istream& operator>> (istream &in, Date &d);

cin ---- object of istream

cin >> d1;

20

Inline functions

• An inline function is one in which the
function code replaces the function call
directly.

• Inline class member functions

– if they are defined as part of the class definition,
implicit

– if they are defined outside of the class definition,
explicit, I.e.using the keyword, inline.

• Inline functions should be short (preferable
one-liners).

– Why? Because the use of inline function results in
duplication of the code of the function for each
invocation of the inline function

21

class CStr
{
 char *pData;
 int nLength;
 …
 public:
 …
 char *get_Data(void) {return pData; }//implicit inline function
 int getlength(void);
 …
};

inline void CStr::getlength(void) //explicit inline function
{
 return nLength;
}
 …

int main(void)
{
 char *s;
 int n;
 CStr a(“Joe”);
 s = a.get_Data();
 n = b.getlength();
}

Example of Inline functions

Inline functions within class declarations

Inline functions outside of class declarations

In both cases, the compiler will insert the code

of the functions get_Data() and getlength()

instead of generating calls to these functions

22

Inline functions (II)

• An inline function can never be located in

a run-time library since the actual code is

inserted by the compiler and must

therefore be known at compile-time.

• It is only useful to implement an inline

function when the time which is spent

during a function call is long compared to

the code in the function.

23

Take Home Message

• Operator overloading provides convenient

notations for object behaviors

• There are three ways to implement operator

overloading

– member functions

– normal non-member functions

– friend functions

