
1

Programming in C++

2

Introduction to C++

• Programming Concept

• Basic C++

• C++ Extension from C

3

Focus

• Focus on

– Programming Concepts

– Programming Design Techniques

• Don’t get lost in

– Language Technical Details

4

What is programming?
Programming is taking

 A problem

 Find the area of a rectangle

 A set of data

 length

 width

 A set of functions

 area = length * width

Then,

 Applying functions to data to solve the problem

5

Programming Concept Evolution

• Unstructured

• Procedural

• Object-Oriented

6

Procedural Concept

• The main program coordinates calls to
procedures and hands over appropriate data
as parameters.

7

Procedural Concept (II)

• Procedural Languages

– C, Pascal, Basic, Fortran

– Facilities to

• Pass arguments to functions

• Return values from functions

• For the rectangle problem, we develop a
function

 int compute_area (int l, int w){

 return (l * w);

 }

8

Object-Oriented Concept

• Objects of the program interact by sending messages to

each other

9

Objects
An object is an encapsulation of both functions and data

• Objects are an Abstraction

– represent real world entities

– Classes are data types that define shared common properties or attributes

– Objects are instances of a class

• Objects have State
– have a value at a particular time

• Objects have Operations
– associated set of operations called methods that describe how to carry out

operations

• Objects have Messages
– request an object to carry out one of its operations by sending it a message

– messages are the means by which we exchange data between objects

10

OO Perspective

Let's look at the Rectangle through object oriented eyes:

• Define a new type Rectangle (a class)
– Data

• width, length

– Function

• area()

• Create an instance of the class (an object)

• Request the object for its area

 In C++, rather than writing a procedure, we define a
class that encapsulates the knowledge necessary to
answer the question - here, what is the area of the
rectangle.

11

class Rectangle

{

 private:

 int width, length;

 public:

 Rectangle(int w, int l)

 {

 width = w;

 length = l;

 }

main()

{

 Rectangle rect(3, 5);

 cout << rect.area()<<endl;

}

 int area()

 {

 return width*length;

 }

};

Example Object Oriented Code

12

Object-Oriented Programming

Languages

• Characteristics of OOPL:

– Encapsulation

– Inheritance

– Polymorphism

• OOPLs support :

– Modular Programming

– Ease of Development

– Maintainability

13

Characteristics of OOPL

• Encapsulation: Combining data structure with actions
– Data structure: represents the properties, the state, or characteristics of objects

– Actions: permissible behaviors that are controlled through the member functions

 Data hiding: Process of making certain data inaccessible

• Inheritance: Ability to derive new objects from old ones
– permits objects of a more specific class to inherit the properties (data) and

behaviors (functions) of a more general/base class

– ability to define a hierarchical relationship between objects

• Polymorphism: Ability for different objects to interpret

 functions differently

14

15

16

Procedure Oriented Programming Object Oriented Programming

Divided Into In POP, program is divided into small

parts called functions.

In OOP, program is divided into parts

called objects.

Importance In POP,Importance is not given

to data but to functions as well

as sequence of actions to be done.

In OOP, Importance is given to the data

rather than procedures or functions

because it works as a real world.

Approach POP follows Top Down approach. OOP follows Bottom Up approach.

Access Specifiers POP does not have any access

specifier.

OOP has access specifiers named

Public, Private, Protected, etc.

Data Moving In POP, Data can move freely from

function to function in the system.

In OOP, objects can move and

communicate with each other through

member functions.

Expansion To add new data and function in POP is

not so easy.

OOP provides an easy way to add new

data and function.

Data Access In POP, Most function uses Global data

for sharing that can be accessed freely

from function to function in the system.

In OOP, data can not move easily from

function to function,it can be kept public

or private so we can control the access

of data.

Data Hiding POP does not have any proper way for

hiding data so it is less secure.

OOP provides Data Hiding so

provides more security.

Overloading In POP, Overloading is not possible. In OOP, overloading is possible in the

form of Function Overloading and

Operator Overloading.

Examples Example of POP are : C, VB,

FORTRAN, Pascal.

Example of OOP are : C++, JAVA,

VB.NET, C#.NET.

18

Basic C++

• Inherit all ANSI C directives

• Inherit all C functions

• You don’t have to write OOP programming

in C++

19

Basic C++ Extension from C
• comments

/* You can still use the old comment style, */

/* but you must be // very careful about mixing them */

// It's best to use this style for 1 line or partial lines

/* And use this style when your comment

 consists of multiple lines */

• cin and cout (and #include <iostream.h>)
cout << "hey";

char name[10];

cin >> name;

cout << "Hey " << name << ", nice name." << endl;

cout << endl; // print a blank line

• declaring variables almost anywhere
 // declare a variable when you need it
 for (int k = 1; k < 5; k++){

 cout << k;

 }

20

Basic C++ Extension from C (II)
• const

– In C, #define statement

• Preprocessor - No type checking.

• #define n 5

– In C++, the const specifier

• Compiler - Type checking is applied

• const int n = 5; // declare and initialize

• New data type

– Reference data type “&”.

int ix; /* ix is "real" variable */

int & rx = ix; /* rx is “alias” for ix. Must initialize*/

ix = 1; /* also rx == 1 */

rx = 2; /* also ix == 2 */

21

C++ - Advance Extension

• C++ allows function overloading
– In C++, functions can use the same names, within

the same scope, if each can be distinguished by its

name and signature

– The signature specifies the number, type, and order

of the parameters expressed as a comma separated

list of argument types

22

C++

• Is a better C

• Expressive

• Supports Data Abstraction

• Supports OOP

• Supports Generic Programming

– Containers

• Stack of char, int, double etc

– Generic Algorithms

• sort(), copy(), search() any container Stack/Vector/List

23

Take Home Message

• There are many different kinds of programming

paradigms, OOP is one among them.

• In OOP, programmers see the execution of the

program as a collection of dialoging objects.

• The main characteristics of OOPL include

encapsulation, inheritance, and polymorphism.

