
DATA STRUCTURES

DR. ANISH SONI

BASIC TERMINOLOGY:

 Data − Data are values or set of values.

 Data Item − Data item refers to single unit of values.

 Group Items − Data items that are divided into sub items

are called as Group Items.

 Elementary Items − Data items that cannot be divided are

called as Elementary Items.

 Attribute and Entity − An entity is that which contains

certain attributes or properties, which may be assigned

values.

 Entity Set − Entities of similar attributes form an entity

set.

 Field − Field is a single elementary unit of information

representing an attribute of an entity.

 Record − Record is a collection of field values of a given

entity.

 File − File is a collection of records of the entities in a given

entity set.

INTRODUCTION

 Data Structure is a systematic way to organize data

in order to use it efficiently.

 Following terms are the foundation terms of a data

structure.

 Interface − Each data structure has an interface.

Interface represents the set of operations that a data

structure supports. An interface only provides the list

of supported operations, type of parameters they can

accept and return type of these operations.

 Implementation − Implementation provides the

internal representation of a data structure.

Implementation also provides the definition of the

algorithms used in the operations of the data

structure

DEFINITION

 Data structure is representation of the logical relationship existing

between individual elements of data.

 In other words, a data structure is a way of organizing all data

items that considers not only the elements stored but also their

relationship to each other.

INTRODUCTION

 Data structure affects the design of both structural &

functional aspects of a program.

 Program=algorithm + Data Structure

 You know that a algorithm is a step by step procedure to

solve a particular function.

INTRODUCTION

 That means, algorithm is a set of instruction written to carry

out certain tasks & the data structure is the way of

organizing the data with their logical relationship retained.

 To develop a program of an algorithm, we should select an

appropriate data structure for that algorithm.

 Therefore algorithm and its associated data structures from a

program.

CHARACTERISTICS OF A DATA STRUCTURE:

 Correctness − Data structure implementation

should implement its interface correctly.

 Time Complexity − Running time or the

execution time of operations of data structure

must be as small as possible.

 Space Complexity − Memory usage of a data

structure operation should be as little as possible.

NEED FOR DATA STRUCTURE:

As applications are getting complex and data rich, there are

three common problems that applications face now-a-days.

 Data Search − Consider an inventory of 1 million(106) items

of a store. If the application is to search an item, it has to

search an item in 1 million(106) items every time slowing

down the search. As data grows, search will become slower.

 Processor speed − Processor speed although being very high,

falls limited if the data grows to billion records.

 Multiple requests − As thousands of users can search data

simultaneously on a web server, even the fast server fails

while searching the data.

To solve the above-mentioned problems, data structures come to

rescue. Data can be organized in a data structure in such a way

that all items may not be required to be searched, and the

required data can be searched almost instantly

EXECUTION TIME CASES:

 There are three cases which are usually used to compare

various data structure's execution time in a relative manner.

 Worst Case − This is the scenario where a particular data

structure operation takes maximum time it can take. If an

operation's worst case time is ƒ(n) then this operation will not

take more than ƒ(n) time where ƒ(n) represents function of n.

 Average Case − This is the scenario depicting the average

execution time of an operation of a data structure. If an

operation takes ƒ(n) time in execution, then m operations will

take mƒ(n) time.

 Best Case − This is the scenario depicting the least possible

execution time of an operation of a data structure. If an

operation takes ƒ(n) time in execution, then the actual

operation may take time as the random number which would be

maximum as ƒ(n).

ASYMPTOTIC NOTATIONS:

 Asymptotic Notations are mathematical tools used to
analyze the performance of algorithms by understanding
how their efficiency changes as the input size grows.

 These notations provide a brief way to express the
behavior of an algorithm’s time or space complexity as the
input size approaches infinity.

 By using asymptotic notations, we can categorize
algorithms based on their worst-case, best-case, or
average-case time or space complexities

 Following are the commonly used asymptotic notations

to calculate the running time complexity of an

algorithm.

 Ο Notation (Big Oh)

 Ω Notation (Omega)

 θ Notation (Theta)

 Big Oh Notation, Ο The notation Ο(n) is the formal

way to express the upper bound of an algorithm's

running time. It measures the worst case time

complexity or the longest amount of time an

algorithm can possibly take to complete.

 Omega Notation, Ω The notation Ω(n) is the formal

way to express the lower bound of an algorithm's

running time. It measures the best case time

complexity or the best amount of time an algorithm

can possibly take to complete.

 Theta Notation, θ The notation θ(n) is the formal

way to express both the lower bound and the upper

bound of an algorithm's running time. ie the average

case.

CLASSIFICATION OF DATA

STRUCTURE

 Data structure are normally divided into two broad

categories:

 Primitive Data Structure

 Non-Primitive Data Structure

CLASSIFICATION OF DATA

STRUCTURE

Data structure

Primitive DS Non-Primitive DS

Integer Float Character PointerFloatInteger Float

CLASSIFICATION OF DATA

STRUCTURE

Non-Primitive DS

Linear List Non-Linear List

Array

Link List Stack

Queue Graph Trees

PRIMITIVE DATA STRUCTURE

 There are basic structures and directly operated upon by
the machine instructions.

 In general, there are different representation on different
computers.

 Integer, Floating-point number, Character constants,
string constants, pointers etc, fall in this category.

NON-PRIMITIVE DATA STRUCTURE

 There are more sophisticated data structures.

 These are derived from the primitive data structures.

 The non-primitive data structures emphasize on

structuring of a group of homogeneous (same type) or

heterogeneous (different type) data items.

NON-PRIMITIVE DATA STRUCTURE

 Lists, Stack, Queue, Tree, Graph are example of non-

primitive data structures.

 The design of an efficient data structure must take

operations to be performed on the data structure.

NON-PRIMITIVE DATA STRUCTURE

 The most commonly used operation on data structure are
broadly categorized into following types:

 Create

 Selection

 Updating

 Searching

 Sorting

 Merging

 Destroy or Delete

DIFFERENCE BETWEEN THEM

 A primitive data structure is generally a basic structure

that is usually built into the language, such as an integer,

a float.

 A non-primitive data structure is built out of primitive

data structures linked together in meaningful ways, such

as array or a linked-list, binary search tree, AVL Tree,

graph etc.

DESCRIPTION OF VARIOUS

DATA STRUCTURES : ARRAYS

 An array is defined as a set of finite number of

homogeneous elements or same data items.

 It means an array can contain one type of data only,

either all integer, all float-point number or all character.

ARRAYS

 Simply, declaration of array is as follows:

 int arr[10]

 Where int specifies the data type or type of elements arrays

stores.

 “arr” is the name of array & the number specified inside the

square brackets is the number of elements an array can store,

this is also called sized or length of array.

ARRAYS

 Following are some of the concepts to be remembered
about arrays:

 The individual element of an array can
be accessed by specifying name of the
array, following by index or subscript
inside square brackets.

 The first element of the array has index
zero[0]. It means the first element and
last element will be specified as:arr[0] &
arr[9]

 Respectively.

ARRAYS

 The elements of array will always be stored
in the consecutive (continues) memory
location.

 The number of elements that can be stored
in an array, that is the size of array or its
length is given by the following equation:

(Upperbound-lowerbound)+1

ARRAYS

 For the above array it would be

(9-0)+1=10,where 0 is the lower bound
of array and 9 is the upper bound of
array.

 Array can always be read or written
through loop. If we read a one-
dimensional array it require one loop for
reading and other for writing the array.

ARRAYS

 For example: Reading an array

For(i=0;i<=9;i++)

 scanf(“%d”,&arr[i]);

 For example: Writing an array

For(i=0;i<=9;i++)

 printf(“%d”,arr[i]);

ARRAYS

 If we are reading or writing two-

dimensional array it would require two

loops. And similarly the array of a N

dimension would required N loops.

 Some common operation performed on

array are:

Creation of an array

Traversing an array

ARRAYS

 Insertion of new element

 Deletion of required element

 Modification of an element

 Merging of arrays

LISTS

 A lists (Linear linked list) can be defined as a collection of
variable number of data items.

 Lists are the most commonly used non-primitive data
structures.

 An element of list must contain at least two fields, one for
storing data or information and other for storing address of
next element.

 As you know for storing address we have a special data
structure of list the address must be pointer type.

LISTS

 Technically each such element is referred to as a node,

therefore a list can be defined as a collection of nodes as

show bellow:

Head

AAA BBB CCC

Information field Pointer field

[Linear Liked List]

LISTS

 Types of linked lists:
 Single linked list

 Doubly linked list

 Single circular linked list

 Doubly circular linked list

STACK

 A stack is also an ordered collection of elements like

arrays, but it has a special feature that deletion and

insertion of elements can be done only from one end

called the top of the stack (TOP)

 Due to this property it is also called as last in first out

type of data structure (LIFO).

STACK

 It could be through of just like a stack of plates placed on table in

a party, a guest always takes off a fresh plate from the top and the

new plates are placed on to the stack at the top.

 It is a non-primitive data structure.

 When an element is inserted into a stack or removed from the

stack, its base remains fixed where the top of stack changes.

STACK

 Insertion of element into stack is called PUSH and

deletion of element from stack is called POP.

 The bellow show figure how the operations take place on

a stack:

PUSH POP

[STACK]

STACK

 The stack can be implemented into two ways:

 Using arrays (Static implementation)

 Using pointer (Dynamic

implementation)

QUEUE

 Queue are first in first out type of data structure (i.e. FIFO)

 In a queue new elements are added to the queue from one end

called REAR end and the element are always removed from

other end called the FRONT end.

 The people standing in a railway reservation row are an

example of queue.

QUEUE

 Each new person comes and stands at the end of the row

and person getting their reservation confirmed get out of

the row from the front end.

 The bellow show figure how the operations take place on

a stack:

10 20 30 40 50

front rear

QUEUE

 The queue can be implemented into two ways:

 Using arrays (Static implementation)

 Using pointer (Dynamic

implementation)

TREES

 A tree can be defined as finite set of data items (nodes).

 Tree is non-linear type of data structure in which data

items are arranged or stored in a sorted sequence.

 Tree represent the hierarchical relationship between

various elements.

TREES

 In trees:

 There is a special data item at the top of hierarchy called the
Root of the tree.

 The remaining data items are partitioned into number of
mutually exclusive subset, each of which is itself, a tree
which is called the sub tree.

 The tree always grows in length towards bottom in data
structures, unlike natural trees which grows upwards.

TREES

 The tree structure organizes the data into branches,

which related the information.

A

B C

D E F G

root

GRAPH

 Graph is a mathematical non-linear data structure

capable of representing many kind of physical structures.

 It has found application in Geography, Chemistry and

Engineering sciences.

 Definition: A graph G(V,E) is a set of vertices V and a set

of edges E.

GRAPH

 An edge connects a pair of vertices and many have

weight such as length, cost and another measuring

instrument for according the graph.

 Vertices on the graph are shown as point or circles and

edges are drawn as arcs or line segment.

GRAPH

 Example of graph:

v2

v1

v4

v5

v3

10

15

8

6

11

9
v4

v1

v2
v4

v3

[a] Directed &
Weighted Graph

[b] Undirected Graph

GRAPH

 Types of Graphs:

 Directed graph

 Undirected graph

 Simple graph

 Weighted graph

 Connected graph

 Non-connected graph

	Slide 1: Data Structures
	Slide 2: Basic Terminology:
	Slide 3: Introduction
	Slide 4: Definition
	Slide 5: Introduction
	Slide 6: Introduction
	Slide 7: Characteristics of a Data Structure:
	Slide 8: Need for Data Structure:
	Slide 9: Execution Time Cases:
	Slide 10: Asymptotic Notations:
	Slide 11
	Slide 12: Classification of Data Structure
	Slide 13: Classification of Data Structure
	Slide 14: Classification of Data Structure
	Slide 15: Primitive Data Structure
	Slide 16: Non-Primitive Data Structure
	Slide 17: Non-Primitive Data Structure
	Slide 18: Non-Primitive Data Structure
	Slide 19: Difference between them
	Slide 20: Description of various Data Structures : Arrays
	Slide 21: Arrays
	Slide 22: Arrays
	Slide 23: Arrays
	Slide 24: Arrays
	Slide 25: Arrays
	Slide 26: Arrays
	Slide 27: Arrays
	Slide 28: Lists
	Slide 29: Lists
	Slide 30: Lists
	Slide 31: Stack
	Slide 32: Stack
	Slide 33: Stack
	Slide 34: Stack
	Slide 35: Queue
	Slide 36: Queue
	Slide 37: Queue
	Slide 38: Trees
	Slide 39: Trees
	Slide 40: Trees
	Slide 41: Graph
	Slide 42: Graph
	Slide 43: Graph
	Slide 44: Graph

